

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

On the Applicability of the Relative Excimer Yield Equation to Electrogenerated Chemiluminescence

J. T. Maloy^a; Allen J. Bard^b

^a Department of Chemistry, West Virginia University, Morgantown, WV ^b Department of Chemistry, The University of Texas at Austin, Austin, TX

To cite this Article Maloy, J. T. and Bard, Allen J.(1975) 'On the Applicability of the Relative Excimer Yield Equation to Electrogenerated Chemiluminescence', *Spectroscopy Letters*, 8: 2, 97 – 99

To link to this Article: DOI: 10.1080/00387017508067311

URL: <http://dx.doi.org/10.1080/00387017508067311>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ON THE APPLICABILITY OF THE RELATIVE EXCIMER YIELD
EQUATION TO ELECTROGENERATED CHEMILUMINESCENCE

Key words: Luminescence, Fluorescence, Singlet, Triplet, Algebra

J. T. Maloy

Department of Chemistry
West Virginia University
Morgantown, WV 26506

Allen J. Bard

Department of Chemistry
The University of Texas at Austin
Austin, TX 78712

In a recent communication, Keszthelyi¹ claims that our application² of the well-known equation used to describe the relative yield of excimer and monomer emission in spectroscopic studies^{3,4}

$$\frac{\phi_D}{\phi_M} = \frac{k'_f}{k_f} \frac{\tau'_D}{1 + \alpha \tau'_D k_d} \left(\frac{\alpha}{\tau'_M} + (1 + \alpha) k_a [A] \right) \quad (1)$$

to electrogenerated chemiluminescence (ECL) studies in the presence of a quenching agent (Q) is "mathematically invalid" because the treatment does not apply when $\alpha = R_D/R_M$ (where R_D is the rate of excimer formation and R_M is the rate of formation of the excited singlet state monomer) approaches infinity. As we have pointed out,² however, this treatment is perfectly general for all steady state luminescent processes, independent of the mode of excitation, and holds for any value of α . Direct substitution in Equation 1 reveals that

$$\lim_{\alpha \rightarrow 0} \frac{\phi_D}{\phi_M} = \frac{k'_f \tau' D k_a}{k_f} [A] = m_1 [A] \quad (2)$$

Simple rearrangement of Equation 1 yields

$$\frac{\phi_D}{\phi_M} = \frac{k'_f}{k_f} \frac{\tau' D}{\frac{1}{\alpha^{-1} + \tau' D k_d} \left(\frac{1}{\tau' M} + (a^{-1} + 1) k_a [A] \right)} \quad (3)$$

so that

$$\lim_{\alpha \rightarrow \infty} \frac{\phi_D}{\phi_M} = \frac{k'_f}{k_f k_d} \left(\frac{1}{\tau' M} + k_a [A] \right) \quad (4)$$

Thus, for the case of "pure" T-route ECL, a plot of ϕ_D/ϕ_M vs. $[A]$ has a slope of $k'_f k_a / k_f k_d$ (which is independent of $[Q]$) and an intercept of $k'_f / k_f k_d \tau' M$ (which may have a minimum value of $k'_f / k_f k_d \tau' M$ when $[Q]$ is zero). The slope may also be written as

$$\frac{k'_f k_a}{k_f k_d} = \frac{m_1}{k_d \tau_D} \quad (5)$$

where m_1 is the slope obtained in the prompt fluorescence experiment ($\alpha \rightarrow 0$).

Since

$$k_d \tau' D = \frac{k_d}{k'_f + k'_o + k_d + k_2 [Q]} \quad (7)$$

it is obvious that the slope of the ϕ_D/ϕ_M vs. $[A]$ plot in "pure" T-route ECL may never be less than that obtained in prompt fluorescence studies.

We have no comments on the remainder of the communication at issue; most of these concepts have been discussed previously elsewhere (see reference 1, and references contained therein). We maintain, however, that our treatment of excimer emission in the presence of a quenching agent in the ECL experiment is valid.

RELATIVE EXCIMER YIELD EQUATION

REFERENCES

1. C. P. Keszthelyi, Spec. Ltrs., 7, 409 (1974).
2. J. T. Maloy and A. J. Bard, J. Amer. Chem. Soc., 93, 5968 (1971).
3. C. A. Parker and C. G. Hatchard, Trans. Faraday Soc., 59, 284 (1963).
4. J. B. Birks, J. Phys. Chem., 67, 1299 (1963).

Received 12/19/74

Accepted 1/06/75